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Cl-O-Cl linkage in their structures. ClO2 is much less 
stable and decomposes heterogeneously at 40-50V 
while Cl2O6 is even less stable and decomposes hetero­
geneously at room temperature.5 If Cl2O3 had a 
stability-imparting Cl-O-Cl linkage, one would expect 
to find it a considerably less labile molecule than it is. 

A consideration of the relative volatilities of the 
oxides likewise indicates the structure. Cl2O7 is a rela­
tively volatile material with a vapor pressure of 80 torr 
at O0,9 and an estimated 1 torr at —45°. Cl2O6 is an 
oil at 20°, with a vapor pressure of approximately 1 
torr, and 0.31 torr at O0.6 Since Cl2O3 is less volatile 
than Cl2O7, its structure can hardly be of the same type 
as Cl2O7, whereas a structure similar to Cl2O6 accounts 
for its behavior very satisfactorily. Cl2O6 is bound in 
the condensed phase by a Cl-Cl bond which is only 1.7 
kcal;10 it exists almost entirely as ClO3 in the vapor 
phase.56 Accordingly, we believe the structure of 
Cl2O3 to be 
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with a weak Cl-Cl bond of a few kilocalories. The ex­
treme instability is then due to dissociation to yield 
the reactive ClO radical. The heat of formation of 
Cl2O3 should then be of the order of +45 kcal/mole, 
since the heats of formation of ClO and ClO2 are +24 
and +25 kcal/mole, respectively.11 
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2,3-Iminosqualene, a Potent Inhibitor of the 
Enzymic Cyclization of 2,3-OxidosquaIene to Sterols 

Sir: 
Recent studies have demonstrated that the squalene 

analog 10,11-dihydrosqualene is not readily cyclized 
under the influence of the sterol-producing enzymes of 
rat liver homogenate, but instead is converted to a 
mixture of mono- and dioxido derivatives by addition 
of oxygen to either or both of the terminal olefinic 
groupings,1 a fact which suggested that 2,3-oxido­
squalene (la) might be an intermediate in the biosyn­
thesis of sterols from squalene. This possibility has 
been fully verified by an appropriate series of experi­
ments.2'3 More recently, the enzyme which effects 
anaerobically the conversion of 2,3-oxidosqualene has 
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been separated from hog liver microsomes in water-
soluble form and has been partially purified.4 This 
note describes the results of an investigation aimed at 
the development of an effective inhibitor for this en­
zyme, 2,3-oxidosqualene cyclase. 

Experiments to determine inhibition were performed 
anaerobically with solutions of partially purified 2,3-
oxidosqualene cyclase in amounts sufficient to effect 
ca. 30% conversion of 25 ixM 14C-labeled 2,3-oxido­
squalene to lanosterol in 30 min. Parallel, duplicate 
runs were made with and without the substance under 
test. Table I records some of the data which have been 
obtained from the study of (±)-2,3-iminosqualene 
(lb), (±)-2,3-sulfidosqualene (Ic), and decahydro-(±)-
2,3-iminosqualene as potential inhibitors. The results 
summarized in the table show strikingly that 2,3-
iminosqualene (lb) is a powerful inhibitor of 2,3-

U1X = O 
b, X = NH 
c, X=S 

oxidosqualene cyclase, as might be expected from the 
greater basicity of lb as compared with la and the sup­
position that the enzyme operates on the oxygen of 
la as a proton-transfer reagent. Decahydro-lb, al­
though a weaker inhibitor than lb, is still effective; 
evidently the high basicity of the imino grouping largely 
offsets the geometric perturbations in the enzyme-
inhibitor complex due to the saturated carbon chain. 
Relative to these aziranes, 2,3-sulfidosqualene (Ic) is a 
weak inhibitor. It is also inert to 2,3-oxidosqualene 
cyclase, as could be shown by experiments with r e ­
labeled Ic in which essentially all the radioactivity was 
accounted for in the recovered substrate Ic after incuba­
tion with the cyclizing enzyme. Little, if any, inhibition 
of lanosterol synthesis from the oxide la and 2,3-
oxidosqualene cyclase was observed with 3/3-amino-

Table I. Inhibition of 2,3-Oxidosqualene Cyclase" 

Inhibitor concn, % conversion of 
Inhibitor ^M la to lanosterol 

None 30 
lb 1.4 3 
Ic 1.4 26 
Decahydro-lb 1.4 25 
lb 4.4 O4 

Ic 4.4 26 
Decahydro-lb 4.4 18 
Ic Ca. 1000 15 
Decahydro-lb Ca. 100 15 

"Substrate concentration 25 pM; anaerobic incubation at 37° 
for 30 min. b In addition, no conversion of la to lanosterol occurs 
after 3 hr of incubation. 
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lanosta-8,25-diene, 3/3-aminolanost-8-ene, or squalane 
at concentrations approximating those of substrate la. 

The inhibitory effect of 2,3-iminosqualene on the 
enzymic conversion of la to lanosterol has been utilized 
to permit the accumulation of 2,3-oxidosqualene using 
squalene as substrate with rat liver homogenate.2 

Equilibration of 0.12 //mole of (±)-2,3-iminosqualene 
with 2 ml of rat liver homogenate for 5 min at 37° fol­
lowed by addition of 14C-labeled squalene (0.075 
/xmole) and ca. 5 mg of reduced triphosphopyridine 
nucleotide and aerobic incubation for 3 hr led after 
chromatographic isolation to 2,3-oxidosqualene in 
25-30% yield.6 The isolated labeled oxide la was 
further identified by its transformation to labeled 
lanosterol by anaerobic incubation with 2,3-oxido­
squalene cyclase for 1 hr (80 % conversion). 

The synthesis of (±)-2,3-iminosqualene was ac­
complished by the sequence: all-?ra«5-(±)-2,3-oxido-
squalene (la)2 -*• 2-azido-3-hydroxysqualene (HN3) -*• 
2-azido-3-/>-toluenesulfonoxysqualene (/j-toluenesul-
fonyl chloride-pyridine) -*• (±)-2,3-iminosqualene (lb) 
(LiAlH4).

6 The structure of lb was confirmed chemi­
cally by its conversion using N-nitroso-4-nitrocarbazole 
to squalene and nitrous oxide.7 Decahydro-2,3-imino-
squalene was synthesized by hydrogenation of lb with 
palladium-on-charcoal catalyst in ethanol; the mass 
spectrum showed a peak due to the molecular ion at 
mje 435, as expected for a decahydro derivative of lb, 
and no peak at mje 425, indicating the absence of 
unreduced lb. (±)-2,3-Sulfidosqualene was obtained 
from the reaction of (±) - la with potassium thiocyanate 
in ethanol;8 independent chemical evidence for the 
formulation of this product as Ic was obtained from the 
reaction with H-butyllithium which produced squalene 
cleanly.9'10 

Work on various aspects of the enzymic cyclization 
of 2,3-oxidosqualene and'its analogs is continuing. 
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Synthesis of a Medium Ring Containing Bridge 
Biphenyl by Photochemically Induced 
Intramolecular Arylation 

•Sir: 

Recent interest in intramolecular radical cyclization 
reactions,1 particularly those involving aryl radicals,2 

prompts us to present details of a photochemical route 
to a bridged biphenyl containing a medium ring. 

Photolysis of aryl iodides in benzene provides a useful 
method for the synthesis of substituted biphenyls.3 An 
extension of this reaction has been employed for effect­
ing intramolecular arylations leading to phenanthrenes,4 

and more recently to the synthesis of aporphines.6 

The results presented in this communication demon­
strate that photochemically induced intramolecular 
arylation may be employed not only in the formation 
of six-membered rings but also for constructing seven-
and eight-membered cycles. 

Irradiation6 of a dilute aqueous solution of the iodo-
aromatic compound I, as the hydrochloride, gave after 
200 hr the photocyclized product, 6,7-dihydro-5H-
dibenz[c,e]azepine (2),7 mp 74-76°, in 57% yield, to­
gether with 13% of starting material. Similarly, ir­
radiation of N-(/3-phenethyl)-2-iodobenzylamine (3) 
as the hydrochloride in water for 113 hr, under the 
same conditions as described above, afforded the 
photocyclized product 4 (R = H) in 25 % yield, mp 
119-120°8 [hydrochloride mp 321-322° dec], Xmax 276 

m/i (log e 2.89), Xsh 231 m,u (log e 4.15), pmr: eight-
proton multiplet, 6 7.38-6.95 (aromatic hydrogens), 
one-proton broad doublets, 3.83 (J = 15 Hz), 3.10 
(J = 15 Hz) (C6H5CH2N),9 five-proton multiplet, 3.20-
2.10(-HNCH2CH2), mol wt (mass spectrum), 209, to­
gether with N-(/3-phenethyl)benzylamine (10%). The 
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